Sensing Viscosity and Density of Glycerol-Water Mixtures Utilizing a Suspended Plate MEMS Resonator
Sprache des Titels:
Englisch
Original Kurzfassung:
A sensor suitable for online monitoring of viscosity and density of glycerol-water mixtures is presented. The device is based on Lorentz force excitation and features an integrated piezoresistive readout. The core sensing element is a rectangular vibrating plate suspended by four beam springs. Two of the plate-carrying springs comprise piezoresistors. With two additional resistors on the silicon rim they form a half Wheatstone-bridge. Through the conductive layer of the beam springs a sinusoidal excitation current is driven. In the field of a permanent magnet, the Lorentz force excites plate vibrations resulting in a bridge unbalance. We recorded both the frequency response of the amplitude and the phase of the bridge output. By evaluating the properties of the resonant system, it is possible to extract the glycerol percentage
and, hence, viscosity and the mass density of the mixtures.