Hamiltonsche Systeme in evolutionärer und De Donder-Weyl Beschreibung
Sprache des Vortragstitels:
Deutsch
Original Tagungtitel:
GMA Fachausschuss 1.40
Sprache des Tagungstitel:
Deutsch
Original Kurzfassung:
Hamiltonsche Systeme sind im Rahmen der Regelungstechnik/Regelungstheorie ein etabliertes Forschungsthema der letzten Jahrzehnte. Dies ist
unter anderem durch die herausragenden Möglichkeiten, welche diese Systemdarstellung hinsichtlich physikalisch motivierte Modellbildung, Systemanalyse, sowie energiebasierten
Reglerentwurfsmethoden bietet, ersichtlich.
Ziel dieses Beitrags ist es nun, wohl bekannte Eigenschaften des konzentriert parametrischen Falls auf Systeme mit verteilten Parametern zu übertragen.
Es zeigt sich, dass im verteilt-parametrischen Fall nicht nur eine
Systemdarstellung, welche sich als Verallgemeinerung des konzentriert-parametrischen Falls ergibt, existiert. Möchte man die Eigenschaften hinsichtlich
einer Erhaltungsgrösse im Falle partieller Differentialgleichungen studieren, wird sich die evolutionäre Darstellung als die geeignete erweisen,
möchte man jedoch die Struktur der Gleichungen wie sie im Falle gewöhnlicher Differentialgleichungen auftreten, auch im Falle verteilter Parameter
wiederfinden, bietet sich eine Darstellung nach De Donder-Weyl an. Der wesentliche Unterschied dieser beiden Zugänge, basiert auf einer Klassifizierung der
unabhängigen Variablen. Wählt man als Evolutionsrichtung die Zeit, dann unterscheidet man strikt zwischen zeitlichen und örtlichen unabhängigen Koordinaten.
Betrachtet man jedoch zeitliche und örtliche Koordinaten gleichwertig, erhält man strukturell ein völlig anderes geometrisches Bild. Dieser Vortrag
stellt nun diese beiden Betrachtungsweisen gegenüber und veranschaulicht anhand von Beispielen, die unterschiedlichen mathematischen Strukturen, welche
den Systemklassen zugrunde liegen.
Sprache der Kurzfassung:
Deutsch
Vortragstyp:
Vortrag auf einer Tagung (nicht referiert)
Vortragsdatum:
21.09.2009
Vortragsort:
Österreich
Details zum Vortragsort:
GMA FA 1.40, Theoretische Verfahren der Regelungstechnik, Anif/Salzburg