The fabrication of organic-inorganic thin films based on layered double hydroxides materials using laser techniques
Sprache des Vortragstitels:
Englisch
Original Tagungtitel:
European Materials Research Society: E-MRS Spring 2017
Sprache des Tagungstitel:
Englisch
Original Kurzfassung:
Nowadays, there is an interest in using two-dimensionally (2D) organized materials as inorganic layered double hydroxides (LDHs) materials, to produce photofunctional organic-inorganic thin films. Here we present intercalation of organic chromophores guest in layered double hydroxide host and fabrication of hybrid organic-inorganic thin film deposition using pulsed laser deposition (PLD) technique. Because of their capacity to intercalate organic anions into the interlayer space due to their high anionic exchange ability, LDHs materials, such as Mg/Al-LDHs are used as host materials for chromophore modified LDH structures. The Mg/Al-LDH powder was prepared using co-precipitation method. Commercial dye coumarin-343 was used as organic chromophore. Prepared organic chromophore modified LDH powders has been characterized by powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and differential thermal analysis (TG-DTA) shows that the coumarin-343 has been successfully intercalated into LDH. Coumarin modified Mg/Al-LDHs thin films were deposited using a Nd:YAG laser working at 532 nm and 10 Hz repetition rate. The gracing incidence - X-Ray Diffraction (GI-XRD) and photoluminescence measurements were used for the thin film characterization. The results show that these organic-inorganic hybrid thin films obtained via pulsed laser deposition (PLD) can be used in optical devices.