86th Workshop on General Algebra 86. Arbeitstagung Allgemeine Algebra (AAA86)
Sprache des Tagungstitel:
Englisch
Original Kurzfassung:
For a polynomial map $\mathbf{f} : k^n \to k^m$ ($k$ a field),
we investigate those polynomials $g \in k[t_1,\ldots, t_n]$
that can be written as a composition $g = h \circ \mathbf{f}$,
where $h: k^m \to k$ is an arbitrary function.
In the case that $k$ algebraically closed of characteristic $0$ and
$\mathbf{f}$ is surjective, we will show that
$g = h \circ \mathbf{f}$ implies that $h$ is
a polynomial.