Kurt Schlacher, Andreas Kugi,
"Control of Nonlinear Descriptor Systems A Computer Algebra Based Approach"
, in Isidori A., Lamnabhi-Lagarrigue F., Respondek W.: Nonlinear Control in the Year 2000, Serie Lecture Notes in Control and Information Sciences, Vol. 259, Springer Verlag, Seite(n) 379-395, 6-2000, ISBN: 1-85233-364-2
Original Titel:
Control of Nonlinear Descriptor Systems A Computer Algebra Based Approach
Sprache des Titels:
Englisch
Original Buchtitel:
Nonlinear Control in the Year 2000
Original Kurzfassung:
Many problems in mathematical modeling of lumped parameter systems lead to sets of mixed ordinary differential and algebraic equations. A natural generalization are so called descriptor systems. Based on the presented geometric framework using the mathematical language of Pfaffian systems, we derive a canonical form of a descriptor system under some mild rank conidtions. This form is equivalent to an explicit system, whenever some integrability conditions are met. This approach allows us to extend the well known concepts of accessibility, observability, equivalence by static feedback, etc., to the class of descriptor systems. The Euler-Lagrange and Hamilton-Jacobi equations for optimal control problems with descriptor systems are also derivable from this canonical form similar to the case of explicit control systems. In addition, this approach offers computer algebra based algorithms, which permit to apply the presented methods efficiently to real world problems.
Sprache der Kurzfassung:
Englisch
Veröffentlicher:
Springer Verlag
Serie:
Lecture Notes in Control and Information Sciences
Volume:
259
Seitenreferenz:
379-395
Erscheinungsmonat:
6
Erscheinungsjahr:
2000
ISBN:
1-85233-364-2
Anzahl der Seiten:
17
Notiz zur Publikation:
Schlacher K, Kugi A.: Control of Nonlinear Descriptor Systems A Computer Algebra Based Approach, In: Nonlinear Control in the Year 2000, Lecture Notes in Control and Information Sciences 259 (Eds. Isidori A., Lamnabhi-Lagarrigue F. and Respondek W.), Springer Verlag, ISBN: 1-85233-364-2, pp. 379 – 395, 2000.