Stable ?? Radical BDPA: Adsorption on Cu(100) and Survival of Spin
Sprache des Titels:
Englisch
Original Kurzfassung:
The adsorption of the radical ?,?-bisdiphenylene-?-phenylallyl (BDPA) molecule to the Cu(100) surface was studied using scanning tunnelling microscopy (STM), scanning tunnelling spectroscopy (STS), and density functional theory (DFT) calculations accounting for dispersion forces. BDPA on Cu(100) was observed to align preferentially along [[EQUATION]] directions due to weak Cu-C chemisorption between fluorenyl carbons with the underlying copper atoms. The curved shape of the BDPA molecule on Cu(100) can be ascribed to the lack of molecular orbital character on the phenyl substituent. A Kondo-like feature from differential conductance (dI/dV) measurements centered close to the Fermi energy ([[EQUATION]]) suggests the retention of an electron spin-½ state, which is corroborated by hybrid DFT calculations that place the SOMO below and SUMO above EF for Cu(100).