Johannes Blümlein, Abilio De Freitas, M. Saragnese, K. Schönwald, Carsten Schneider,
"The Logarithmic Contributions to the Polarized $O(alpha_s^3)$ Asymptotic Massive Wilson Coefficients and Operator Matrix Elements in Deeply Inelastic Scattering"
, in Physical Review D: Particles, Fields, Gravitation, and Cosmology, Vol. 104, Nummer 3, arXiv:2105.09572 [hep-ph], Seite(n) 034030, 2021, ISSN: 2470-0029
Original Titel:
The Logarithmic Contributions to the Polarized $O(alpha_s^3)$ Asymptotic Massive Wilson Coefficients and Operator Matrix Elements in Deeply Inelastic Scattering
Sprache des Titels:
Englisch
Original Kurzfassung:
We compute the logarithmic contributions to the polarized massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $Q^2gg m^2$ to 3-loop order in the fixed- flavor number scheme and present the corresponding expressions for the polarized massive operator matrix elements needed in the variable flavor number scheme. The calculation is performed in the Larin scheme. For the massive operator matrix elements $A_{qq,Q}^{(3),PS}$ and $A_{qg,Q}^{(3),S}$ the complete results are presented. The expressions are given in Mellin-$N$ space and in momentum fraction $z$-space.
Sprache der Kurzfassung:
Englisch
Journal:
Physical Review D: Particles, Fields, Gravitation, and Cosmology