David Cerna, Teimuraz Kutsia,
"Idempotent Generalization is Infinitary"
, Serie RISC Report Series / Technical report, RISC, JKU, Hagenberg, Linz, 2018
Original Titel:
Idempotent Generalization is Infinitary
Sprache des Titels:
Englisch
Original Kurzfassung:
Let §\mathbf{I}_{S}$ be an equational theory s.t. for each $f\in S$, $f(x,x)=x$. Such an equational theory is said to be {\em idempotent}. It is known that the anti-unification problem (AUP) $f(a,b) \triangleq g(a,b)$ modulo $\mathbf{I}_{\lbrace f,g \rbrace}$ admits infinitely many least-general generalizers (lggs)~\cite{LPottier1989}. We show that, modulo $\mathbf{I}_{\lbrace f\rbrace}$, $f(a,f(a,b)) \triangleq f(b,f(a,b))$ admits infinitely many lggs.