Orly B. Tarun, Christof Hannesschläger, Peter Pohl, Sylvie Roke,
"Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales"
, in Proceedings of the National Academy of Sciences of the United States of America (PNAS), Vol. 115, Seite(n) 4081-4086, 4-2018, ISSN: 1091-6490
Original Titel:
Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales
Sprache des Titels:
Englisch
Original Kurzfassung:
Biological membranes are highly dynamic and complex lipid bilayers, responsible for the fate of living cells. To achieve this function, the hydrating environment is crucial. However, membrane imaging typically neglects water, focusing on the insertion of probes, resonant responses of lipids, or the hydrophobic core. Owing to a recent improvement of second-harmonic (SH) imaging throughput by three orders of magnitude, we show here that we can use SH microscopy to follow membrane hydration of freestanding lipid bilayers on millisecond time scales. Instead of using the UV/VIS resonant response of specific membrane-inserted fluorophores to record static SH images over time scales of >1,000 s, we SH imaged symmetric and asymmetric lipid membranes, while varying the ionic strength and pH of the adjacent solutions. We show that the nonresonant SH response of water molecules aligned by charge?dipole interactions with charged lipids can be used as a label-free probe of membrane structure and dynamics. Lipid domain diffusion is imaged label-free by means of the hydration of charged domains. The orientational ordering of water is used to construct electrostatic membrane potential maps. The average membrane potential depends quadratically on an applied external bias, which is modeled by nonlinear optical theory. Spatiotemporal fluctuations on the order of 100-mV changes in the membrane potential are seen. These changes imply that membranes are very dynamic, not only in their structure but also in their membrane potential landscape. This may have important consequences for membrane function, mechanical stability, and protein/pore distributions.
Sprache der Kurzfassung:
Englisch
Journal:
Proceedings of the National Academy of Sciences of the United States of America (PNAS)