Lin Jiu,
"Integral representations of equally positive integer-indexed harmonic sums at infinity"
, in Research in Number Theory, Vol. 3, Nummer 10, Seite(n) 1-4, 2017, ISSN: 2363-9555
Original Titel:
Integral representations of equally positive integer-indexed harmonic sums at infinity
Sprache des Titels:
Englisch
Original Kurzfassung:
We identify a partition-theoretic generalization of Riemann zeta function and the equally positive integer-indexed harmonic sums at infinity, to obtain the generating function and the integral representations of the latter. The special cases coincide with zeta values at positive integer arguments.