L Zheng, Peter Stathopulos, Rainer Schindl, G.Y. Li, Christoph Romanin, Mitsuhiko Ikura,
"Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry"
, in Proceedings of the National Academy of Sciences of the United States of America (PNAS), Vol. 108, Seite(n) 1337-1342, 2011, ISSN: 0027-8424
Original Titel:
Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry
Sprache des Titels:
Englisch
Original Kurzfassung:
Stromal interaction molecules (STIM)s function as endoplasmic reticulum calcium (Ca(2+)) sensors that differentially regulate plasma membrane Ca(2+) release activated Ca(2+) channels in various cells. To probe the structural basis for the functional differences between STIM1 and STIM2 we engineered a series of EF-hand and sterile ? motif (SAM) domain (EF-SAM) chimeras, demonstrating that the STIM1 Ca(2+)-binding EF-hand and the STIM2 SAM domain are major contributors to the autoinhibition of oligomerization in each respective isoform. Our nuclear magnetic resonance (NMR) derived STIM2 EF-SAM structure provides a rationale for an augmented stability, which involves a 54° pivot in the EF-hand:SAM domain orientation permissible by an expanded nonpolar cleft, ionic interactions, and an enhanced hydrophobic SAM core, unique to STIM2. Live cells expressing "super-unstable" or "super-stable" STIM1/STIM2 EF-SAM chimeras in the full-length context show a remarkable correlation with the in vitro data. Together, our data suggest that divergent Ca(2+)- and SAM-dependent stabilization of the EF-SAM fold contributes to the disparate regulation of store-operated Ca(2+) entry by STIM1 and STIM2.
Sprache der Kurzfassung:
Englisch
Journal:
Proceedings of the National Academy of Sciences of the United States of America (PNAS)