?Exotic? materials have become the focus of recent developments in organic electronics that envision biocompatibility, biodegradability, and sustainability for low-cost, large-volume electronic components. In this brief review, we discuss firstly the use of paper, leather, silk, hard gelatine, and bio-degradable plastics as substrates for electronic devices, and secondly smoothing agents, such as polydimethylsiloxane and aurin. Thirdly, we describe DNA and nucleobases as examples of exotic dielectrics with low dielectric losses and leakage currents as well as sufficiently high dielectric breakdown strength. Fourthly, natural, nature-inspired, and common-commodity semiconductors are presented that broaden the materials base for organic semiconductors and may inspire further work to identify semiconductors that are stable in the face of changing environmental conditions yet degradable at the end of their product lifetime. Sustainability in organic electronics, energy storage, and emerging concepts will also be reviewed briefly. Research on ?exotic? organic materials may ultimately result in environmentally safe ?green electronic? products.