Manuel Kauers, Christoph Koutschan, Doron Zeilberger,
"Proof of Ira Gessel's Lattice Path Conjecture"
, in Proceedings of the National Academy of Sciences, Vol. 106, Nummer 28, Seite(n) 11502--11505, 7-2009, ISSN: 0027-8424
Original Titel:
Proof of Ira Gessel's Lattice Path Conjecture
Sprache des Titels:
Englisch
Original Kurzfassung:
We present a computer-aided, yet fully rigorous, proof of Ira Gessel's tantalizingly simply-stated conjecture that the number of ways of walking $2n$ steps in the region $x+y \geq 0, y \geq 0$ of the square-lattice with unit steps in the east, west, north, and south directions, that start and end at the origin, equals $16^n\frac{(5/6)_n(1/2)_n}{(5/3)_n(2)_n}$ .