Erhard Aichinger,
"2-affine complete algebras need not be affine complete"
, 2002, ISBN: 0002-5240, Erhard Aichinger. 2-affine complete algebras need not be affine complete. Algebra Universalis 47 (2002), 425-434.
Original Titel:
2-affine complete algebras need not be affine complete
Sprache des Titels:
Englisch
Original Kurzfassung:
For each $k \in \N$, we exhibit a finite algebra
$\ab{R}_k$ such that $\ab{R}_k$ is $k$-affine complete,
but not $(k+1)$-affine complete; this means that every
$k$-ary congruence preserving function on $\ab{R}_k$
lies in $\Pol_k \ab{R}_k$, but there is a
$(k+1)$-ary congruence preserving function
of $\ab{R}_k$ that does not lie in $\Pol_{k+1} \ab{R}_k$.
Sprache der Kurzfassung:
Englisch
Englischer Titel:
2-affine complete algebras need not be affine complete
Englische Kurzfassung:
For each $k \in \N$, we exhibit a finite algebra
$\ab{R}_k$ such that $\ab{R}_k$ is $k$-affine complete,
but not $(k+1)$-affine complete; this means that every
$k$-ary congruence preserving function on $\ab{R}_k$
lies in $\Pol_k \ab{R}_k$, but there is a
$(k+1)$-ary congruence preserving function
of $\ab{R}_k$ that does not lie in $\Pol_{k+1} \ab{R}_k$.
Erscheinungsjahr:
2002
Notiz zum Zitat:
Erhard Aichinger. 2-affine complete algebras need not be affine complete. Algebra Universalis 47 (2002), 425-434.